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Generalized kinetic equations for determining the aggregation of particles in 

suspensions are derived with allowance for dispersion and multiple and exchange 

interactions. A system of equations is derived in a general form for moments of 
the distribution function, and a method for determining equilibrium distribution 
is indicated. Some exact solutions, including self-similar, of the proposed kine- 
tic equations are obtained. 

Physical properties of many suspensions substantially depend on the processes 

of aggregation and dispersion of suspended particles. Such processes are defined 
by special kinetic equations, an example of which is the equation of drop coagu- 

lation (see Cl]). The latter takes into account only one aggregation process, viz. , 
the amalgamation of drops produced by double collisions. Theories which take 
into account also the dispersion of particles (see, e. g. , [ 21) are known. However 
for some systems with high concentration of suspended particles such as, for in- 

stance, blood in which erythrocytes occupy about half of the volume, it is neces- 

sary to take into consideration a more complex interaction between particles. 
Thus in a concentrated suspension the determining effect may be that of col- 

lisions other than double, which in the case of blood become significant for an 

erythrocyte concentration Ii > 5% p]. Besides aggregation and dispersion of 
particles, exchange interactions are possible when two or more particles not iden- 

tical to the original ones are formed as the result of collisions ( * ) . If under cer- 
tain conditions there exists a limit dimension for the aggregate but with possible 
collisions of arbitrary particles, exchange interactions must necessarily OCCUT . 

The above phenomena are taken into consideration in the kinetic equation 

which is derived and analyzed below in Sects. 1 - 4 and 7. Certain exact solu- 
tions of that equation are presented in Sects. 5 and 6. 

1. The kinetic equrtlon. Let us consider a suspension in the form of a mix- 

ture of a “carrier” fluid and suspended particles which may coalesce into aggregates of 
any arbitrary form as the result of effective collisions, i. e. leading to the sticking to- 

* ) This was brought to the attention of the authors by A. G, Kulikovskii. 
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gether of particles. Aggregates may be dispersed by the action of external, mainly hydro- 

dynamic forces or because of instability. The possibility of exchange interaction is as- 

sumed. 
We define the state of the mixture by the distribution function f (8, t, r) ( f (v) in 

abbreviated notation) such that f (v) dv is the expected number of aggregates of vo- 

lumes comprised between v and c + dv in a unit of the physical space volume. The 
integrals 

n = ~~(~)~~, w = ~~~(~)~~ (1.1) 
0 0 

represent the numerical and volume concentrations of aggregates, respectively. The 
average volume of an aggregate is defined by 

UT =Hln (1.2) 

The f~damental equation satisfied by the distribution function f (v) is of the form 

where u is the mean velocity of the mixture, I‘ = I’ (~3, t, r) is the rate of distribu- 

tion change produced by the aggregation processes,subscripts k, f and e relate,respec- 

tively, to sticking, dispersion and exchange, and superscripts & denote the formation 

and disappearance of u-aggregates (of volume close to v) , respectively. The stream q 

represents diffusion of aggregates, and the integrals 

$I = 1 qdn, 

00 

qH = 5 @dl: (1.4) 
0 0 

have the meaning of flow density of numerical and volume concentrations, respectively, 
Denoting the average velocity of -u-aggregates by U (2)) , we have 

q = (u - u (v)) f (1.5) 

We denote by K, (ml, . . ., m,) E K, (m, IIs) the probability of formation of an 
aggregate of volume MS s m, + . . . + n, produced by a simultaneo~ sticking of 
s aggregatesofvolumes m,, . . ., m,. By definition function K, takes into account the 
probability of the s-multiple collision itself. The symbol m 1 i3 will henceforth denote 

the set of arguments m,, . . . , m,. 
We denote by F, (m 11’) the probability density of dispersion of an aggregate of vo- 

lume F, into s parts of volumes m,, . . ., m,, i.e. F,dm, . . . dm, defines the 
p~babili~ of simultaneo~ formation of fragments of volumes contained in the intervals 

(mI, ml -t dm,), . . ., (m,, m, + dm,). 
Finally, the probability density of exchange interaction consisting of instantaneous 

transformation of the set of aggregates of volumes m,, m2, . . ., m, into a set of vo- 

lumes pl, p2, . . ., Pr is denoted by ES, (m 115 ; p Ilr ), where M, = P, G 
p1 f - * * A- ptr and s > 1 . 

Functions x, and F, are symmetric and for negative ~guments are identically zero ; 
function E,,. has similar properties with respect to variables mi and pi taken individu- 
ally. We assume that x,, F* and E,,. may also depend explicitly on time 2 and coor- 
dinates r. 

Using the derived probability functions and taking into account their properties, we 
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can write for rk*, I’$ and Fe* the following expressions: 

I‘,* = jj &S * * 9 SK,(m fi-‘, Y - iWs-l)f(V - M,_,)zf (mj) dV2j 
0.6) 

S=2 
j=l 

(1.7) 

u - Pr_l) f (v) ff f (mj) dmj ‘fll dp, 
j=1 k=_‘?. 

Unless otherwise stated, here and subsequently integration is to be carried out with res- 
pect to all variables from 0 to CO . Equation (1.3) together with formulas (1.6)-(1.8) 

and corresponding boundary conditions determine the distribution function for specified 

K,, F,, E,, and 9. In the particular case, when 

K 8 = 0 fs > 3), F, zz 0 (s > 2), Es, G 0 (s > 2, r > a), (1.9) 

Q 0 ZL= 

we obtain from (1.3) (1.6) - (1.8) the equation derived in [4]. 

2. Moments of the dlttribution function, We call 

Q4 = f 5 vqf (v) dv 

a moment of order 4 . 

(2.1) 

Multiplying Eq. (2.3) by up and integrating with respect to u from 0 to 00, after 

transformation, we obtain 
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The double sum appearing here may also be represented in the form 
S 

= 1 
P-l 

-V=&i- 5.. .&E,,(ml,“;PlJ n dP, (2.3) 
r=2 ’ k--l 

Es- = 2: +- 1. . . \ J?$,, (p 1:; m 1:) f (i’r) f-’ (&) ii’ f (Pk) dpk 

rm2 * k+ 

It follows from (2.2) that for 4 = 0 the equation which defines the variation of the 
complete number of aggregates is 

All exchange terms with r = s in (2.4) obviously, vanish, since such interactions do 
not aIter the number of aggregates. For g = 1 all integral terms in the moment equa- 

tion (2.2) vanish, and we obtain the conventional diffusion equation 

deeds = -div qn (2.5) 

In the particular case, when conditions (1.9) are satisfied, we obtain from (2.2) the eqna- 
tion derived in [5]. 

To explain the essence of above transformations let us consider, for instance, the integ- 
ral 

1 ’ ’ 

a s s! (r-i)! . ” vqqr (m I;-“> P,_l + v - Jf,_1: P I;-? d x (2.6) 

S-l r-1 

f (J’,._l f v - ~~s-l) n f Wj) 39 n $dv = 
j=l k=l 
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9 substituting the variable of integration pr for pE, where 1 < 1 6 r - f, we obtain 

From this, after converting pr + PZ and PI 3 PYY we obtain 

j==l k=l 
(2.8) 

Thus the considered integral can be presented in the form (!2,8), where i = 1, 2, , * ., r 
(see (2.7)). Adding all of the different r representations, we obtain 

~S...(~p~j E,, (mlls; P If) fi f tmjtdmj ‘ZdPk 
1 j=l k-l 

Formula (2.3) is derived as follows. Let us express the double sum in (2.2) in the form 

We carry out the conversion in the second sum according to the rule mj -+ prr, dk I, mj, 
s-trand r-3 t and transpose the order of summation and integration. This yields 

Substituting m, for the variable of integration pr and taking into account the equality 
MS = P,, we obtain 

3, Aggr@gatlon equilibrium, In the case of absence of diffusion Eq, (2.2) 
with allowance for (2.3) can be written as 

&nQ,=g ~S...S[g,"j,nI,g)Rr(mi)-lis*(ml~}f(~a)]X (3.1) 
s=s . j=1 

[(~~~j, -~~~~]ir dmj 

K,* 2 K, + E,‘, Fj:‘=F& E, 
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Let us consider a system with an interaction of only one multiplicity 1 

K,E 0 (s# Z), F,=O (s # 1), E,, = 0 (s # 1, r # 2) (3.2) 

For such system from (3.1) we obtain 

+Qn = -+ 5 . ..s [K,* (m,lz,h f(mj)-Fr*(mll'll(M1)~ (3.3) 

j=l 

[($Jrq)"--imiq]fI dmj 
1 1 j=1 

The following statement - which can be checked by direct computation - is valid: if 

the functional equation (*) l 

Kl* cm 11’) Fl f (4 - FI* (m 11’) f (Ml) = 0 (3.4) 

has solutions such that df / dt = 0, these solutions are also solutions of the input kinetic 

equation (1.3) for the particular case of (3.2). 
It is thus possible to determine equilibrium distributions and analyze conditions oftheir 

existence without having to solve the input kinetic equation of the form (1.3) ( **) 
It should be noted, however, that the question of whether the solutions of the fundamen- 

tal equation (3.4) determine all of the aggregate equilibrium states possible with the 
considered system, and whether the vanishing of all derivatives &Q, / & is equivalent 
to equilibrium in the meaning of df / dt remains open. 

If interactions of different multiplicities occur simultaneously in the system, equilib- 
rium states are also possible, but attempts at finding a similar example proved unsuccess- 
ful. 

4. Dincrete ayatemr. Let us assume that only particles whose volumes belong 
to the Sequence v 11 = Vlr V,, . . ., vk, . . . , (Vk > I++~) exist in the suspension, and that 
vi -t Vj also belong to VI 1 for any i and i . The distribution function is then of the form 

f (v) = i ni6 (71 - vi) (4.1) 
i=l 

where ni is the numerical concentration of aggregates of volume vi, and Hi = nivi is 
their volume concentration. Then 

n = i ni, H = 5 nisi, nQ, = i ni (v~)~ 
(4.2) 

1 1 1 

For a discrete distribution to exist it is necessary that 

Fs (m II”) = 0, Es,. (m 11’; P II’) = 0 

even if only one of the quantities mi or p’ 1 , respectively, do not belong to the sequence 
v 1 I. Functions Fs and E,r behave with respectto rni and pi , respectively, as 8-functions 

*) The theory of such equations and effective methods of their solution are given in [S-]. 
**) In the case of more specifically defined systems Eq. (3.4) is amenable to thermody- 
namic interpretation (see [7] ). 
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oforder s- 1 and r--i,e,g,, 

(k) j=l 

where Y, is a regular symmetric function which vanishes for negative arguments, and 
W (N Ut* 5 q* 7 - . *, ~1”’ is the kth arbitrarily chosen set of s terms from Y h. 

Ic’ are considered to be different when vi:’ # 
Sets k and 

$‘ev en for a single value of i. External 
summation in (4,3) is extended to all different sets. 

It should be noted that in computing r (see Sect. 1) it is generally necessary to bear 
in mind as regards the quantity of formed or vanished v aggregates that the result of 
sticking or dispersion depends on the number of particles of volume v taking part in 
such events. Furthermore, physically identical elements of volume space are repeatedly 
taken into account in the integration of formulas for I? e The factorial coefficients at 
integrals adjust the computation exactly only at points where all arg~rneR~ of integrated 
functions are different. Consequently, functions 

KS* (m 11~) = K, (m 11”) 8 (m ]P), FsX (m II") = F'S (m 11") 43 (m II") (4.4) 
EsrX (m jP; p 11’) = E,, (m 11”; p 1;) 8 fm 19) Q (lpi3 8 (m Ii’) = d V’ fm II”) 

where 9 (m 11”) is the number of physically different permutations in the sequence m 11” , 
should have been used in formulas (l&6) - (1.8) instead of Kg, P, and Esr . It can be 
shown with the use of elementary combinatorial considerations that the introduction of 
these functions takes completely into account both of the above aspects. 

Since in the N-dimensional space function 8 (m iIN) differs from unity in a manifold 
of not more than N - i. dimensions, hence for any arbitrary bounded functions 

A? 

Owing to this property, the absence of the correction factor 8 does in no way affect 
the input kinetic equation, as long as the distribution functions in the integrands and the 
interaction properties arc bounded, However, function 8 must be taken into account 
when passing to the definition of discrete systems with distributions of the kind (4.1). 
It is then necessary to set formally N 

s s 
[s (r?L I*“} - 11 63 (m 1, 5 -- . . m' It”, fl dtnj = 8 (~2' It") -1 

jzi 

where the right-hand part is evidently not always zero. 

These considerations are not new,altho~h they have not been explicitly formu~ted 
in the literature, and in many papers an either not used at aI1 or applied, for example, 
to dispersion terms of the kinetic equation (see, e. g. , [S] ) . 

Thus, for passing to the equation$ of the discrete system it is necessary to substitute 
ffsX, F? and E,,’ in (1.6) - (1,8) for R,, F, and E,, and then, carry out integration 

of I% 0*3) vi+5 V<f” 

s 
df &J -;= 

z’i-” & s 
&+ .-I?,-+I?;- If- -+ ‘re+ - !C’e - div n] clu (4.5) 

ri--” 

where a is defined by the inequalities 
C-1 < vi - a < v’i < us + a < l?i+$ 
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The general form of obtained equations is very cumbersome, hence we restrict these to 
the example of a system with double interactions (1.9) and aggregates formed from iden- 

tical “elementary” particles. Setting 

7,Yt = iv&, 8 (Vi, Vj) = 1 +& 

FZ (ml, mz) = 2 ‘W( ml, m2) 2 [B (ml - vi) + 6 (mz - vj)l 
i, j 

EZS (ml, mz; Pi, Pz) = -I_ E (ml, ma; PI, P2) 2 . . 
we obtain 

(4.6) 

ak, I = K-2 (vkr “1) (I f 6kl)$ Pkl = y tVk, vl) (I f ‘,,) 

j-l 

Pj = 2 Pi, j-1 

i=l 

z+j-I 

For qj = 0, o,, t = 0 and Yk, r, 3, j = 9 this yields the classic Smoluchowski equations 

[9], while for nonzero qj, ok, I, and flk, 1, and yk, r, i, j = 0 the equations proposed in 

[Z, 81 are obtained. 

5, Exrct 80lutiona. Let us now consider certain possibilities of obtaining exact 
solutions of the kinetic equation (1.3) or moment equations (2.2). We restrict the analy- 
sis to the spatially homogeneous problem of aggregation in the absence of dispersion, 

exchange interactions, and diffusion, i, e. , to the problem analyzed in considerable de- 

tail for the case of double collisions. In the case of collisions of 1 -multiplicity from 

(1.3) and (1.4), we obtain 

df 1’ 
d6=I! *-* I a ‘[K,(m I:-‘, u - J!f,-,)f(v - Mr-1) - 

l-l 

ZKl(rn \:4, v)f Cd] ITZ. ww% 
j-1 

dn -= 
dt ‘,-’ S..,Sh’t(ml,‘)lTi(m,,dmj 

j=1 

(5.1) 

(5.2) 

We would point out that for integral a,, ua, . . . the following ew%lities 

s s . * * m~‘~a’ . . . m:-s;1q (Y - M,_,) (Y - ~~_~)a6~-p~~ (u - 
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are valid. 

Hence for any ~lynomial functions K, (which vanish for negative arguments) by ap- 
plying to the input equation (1.3) (for q = 0, F, = 0, E,, = 0) the Laplace trans- 
formation with respect to the variable 2), we obtain an equation in q, which is of the 
first order with respect to time, while its order with respect to the variable p is equal 

to the highest power of the variable mi in X, (m II'). The coefficients of the equation 
contain the a priori unknown derivatives of rp with respect to p for p = 0, i.e. 

the moments of distribution function are of an order not exceeding that of the equation, 
Setting in the equation p -+ 0, we obtain an additional relationship linking moments 

of various orders, which is, generally, insufficient for the determination of all coefficients. 
Obviously the equation in g, and the additional relationship form a closed system only 

when the equation is of the first order with respect to p. In that case we obtain a system 
containing only 12, p, and H, where W is determined by the input data. This implies 
that the described procedure can be effective, if -tit is a linear function with respect to 
each of mi separately, i.e. it is a sum of elementary symmetric polynomials 

K~=XIG+K~l~mi+Kl,f: mimjj-...+.K,l~mi (5.3) 
1 i,j=l 1 

where for Ktg the sum c,k of various products appears as a factor, 
It is evident that integrals of the form 

s s . . . rn~'~"... rnz8 [(imi)' --i;miq]fi f(mJdmj 
1 1 j-1 

can be expressed in .terms of dis~ibution function moments of an order not exceeding 

Q - 1 -f- max Ui, when q > 0, and not higher thanmax aI when q = 0. Hence the 
substitution of (5.3) (max ai = 1) into the moment equation (2.2) yields a system 
of unconnected equations which have to be solved consecutively. All these considerations 
can be readily extended to the system in which collisions of various multiplicities take 

place. 
In particular the equation for numerical concentration of aggregates assumes the form 

$ = ; + i C,iKSins-iHi 
s=1 . i=O 

(5.4) 

Examples. In the case of collisions of I-multiplicity and KI = Kl, = conat 
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from (5.4) we obtain dn -=- 
dt (5.5) 

Applying the Laplace transformation to Eq. (1.3) with respect to U, we obtain the equa- 
tion for q, which for p + 0 is transformed into (5.5), since ~JJ (0, t) + n (t) 

Id9 1 -- 
Klo dt = I! cp’ - 

from this, passing to variables z = (n, - n) / no, $ = cp (n / n,)-z/(r-l), no = n (o), 

we obtain 
d’# 
dz= 9’ i 

Consequently 
(1- l)r$l 

($ = (y-l) po(p)[l _ (1 -$)$q-) 
For the initial distribution defined by f. = Avv-ie”“,~, where v = (I - 1)-l, u = 

vrzu / H and A = n,,u~I’-~ (v), after inverse transformation we obtain 

f = Awl (,)‘+” exp ( - z) 

In the particular case of double collisions (1 = 2) this solution becomes the same as 

the one derived earlier [ 10, 111. 

As the second example, let us take the case of K, = KllZmi and K,l = const 

for the same initial distribution as above. From (5.4) and (1.3) for cp and n we obtain 

‘%a system (5.6) 

dt= 
- A_ H&l, k f$ = - + t$ - (&[(I - 1) Hd-2~ - d-1 21 

From the first equation we have 

Using variables 7 = (n, - n) ! n, and @ = cp / n, from the second equation we have 

Taking into account the initial condition 

we can write solution (5.7) in the implicit form 

p = aT(0l-i - 1) + _q$ l-l - a 
1 I 

from which, after solving for @ and inverse transformation we have 

f = 
&)(I - T) v 

u (~)Y’2e--(L(itT)UI~,()1) v/a%), C = [Al?(v) &t]t Iv 

(W 

t=l- 1+ r fq{& 1!(2-J) 

(l- 3): 1 



128 A.S.Pope1, S.A.Regirer and N.Kh.Shadrlna 

The particular case of (5.6) for I = 2 was considered earlier in ~121. 
TO illustrate the structure of moment equations we take as the third example the case 

of iy~ = Kti~mj,mi,. . , mji . Writing (2.2) as 

d 

dt ~Qc=~~... K’i C S(Z mj*mj* * * . ‘“k) (2 P(r 11’) X 
(j) P) 

rnprn:. . * In:‘) b f flTlj) dmj 

jz1 

we readily observe that generally its right-hand part is expressed in terms of the product 
of different moments. For 4 > 2 

&nQ, = f$~lr,p,Qy~Q~~. . .Qzq, 8-3(ccl,..., aa) 
(at 

where summation in the right-hand part is extended over all different sets of integers 
a k such that 

a1 + "2 + . . . + a, < 1, ISa, + 2+a, + . . . + qa, = i + q 

The determination of coefficients fi is a very cumbersome combinatorial problem. For 
example, in the particular case of i = 1 we have 

dnQ3 3Kttd 

- = (l- 2)! dt - [Qf2QsQs + (I - 2) Q:-“921 

6. Self-rfmllrr 8olutforb~. Let: in the absence of diffusion all interactions 

be defined by homogeneous functions, in which case q = 0 and 

Then in the case of space homogeneity the input kinetic equation (1.3) has self-similar 

solutions of the form 
f (G t) = g (G 9 (I$ V ==v/h(t) (6.2) 

with 
I(JJtO> = g(O)9 (6) 

which implies that the form of function 9 (v) is predetermined by the input data. It 

is shown below that a solution of the form (6.2) exists when special conditions are im- 

posed on K,, F, and 
into (1.1) yields 

E,, as well as on initial distributions. The substirution of (6.2) 

n = ghC,, H = gh2C, (6.3) 

where &‘a and C, are arbitrary constants. From this 

Cl 
g=n2m, hCH cO -- 

)a Cl 
(6.4) 

Using formulas (6.1) and (6.2). from (1.3) we obtain 
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~Y~(Y)=--~... $F.(I/:-‘,v-~l&) qqq8fj1d$j 
1 j-l 

r-1 S-l 

refsr (V) = 5. . * 1 4, (w, 7 ci + I' - 2 Ei; 5 lyl, ") x 

1 

S-l S-l r-l 

S-l 

TG(V) = 1. . * SE,, (E I:-1, Vi 5 IF:? Ei + T' - $lci) X 

r-l 

Let us assume that the quantities in (6.7) are independent of time and specify that the 

coefficients in the right-hand part of (6.5) which depend on time t be proportional to 

?zp; then the coefficients in (6.6) will be proportional to pl@-I. The number @ proves 
to be associated with the degrees of homogeneity of functions in (6.1) by relationships 

p8--..s-j-1--@, vS=3-s-fi, qsT=s-r+2-fi 

which is possible when pS = v, + 2(s - 1) = qST -I- r - 1. Using (6.4) we trans- 
form (6.5) and (6.6) to the form 
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Eliminating from these formulas n we obviously obtain an integra-differential equation 
for $ (V), whose solution yields the admissible initial distributions. The self-similar 
solution’itself is of the form (6. Z), where g and h are expressed in terms of n in con- 

formity with (6.41, and n satisfies Eq, (6.9). A solution coinciding with the one consi- 
dered here for the particular case of (1.9) was previously obtained in [ 13, 141. 

Note that self-similar solutions exist also in the presence of diffusion with a special 

form of stream q. The exact solutions derived in Sects. 5 and 6 can be extended by 
transformation of the time variable to the case, when functions R,, F8 and Elr depend 

not only on rni amd & but contain a coefficient (one and the same) which explicitly 
contains time. 

The case ofspace inhomogeneity requires special consideration : however in the case, 

important from the practical point of view, in which 

II = u (t, y) e,, f = f (0, 6 Y), KS = KU (n IP; 6 Y) 
Fs = F, (m 11’; t, ~1, E,r = Es, (m IP; P 117 t, y) 

the reasoning in Sects. 5 and 6 remains valid, and the coordinate y appears in the solu- 

tion as a parameter. 

7, Concluding rrmrtkr, A more detailed definition of suspension would be 

obtained by the intr~u~ion of the distribution function f* (u, t, r, Z), where 6 is the 

velocity of the aggregate. Then 

f -lf*d& q =\(ii - 5) f*dg 

Functions Tk*, l’ff and Te* are generally related to the integral of collisions and 
equations for f*. The form of that equation is not known and the available data on the 
interaction of particles of a concentrated suspension between themselves and with the 
carrier fluid are insufficient for its derivation. A kinetic equation in its conventional 
meaning apparently does not exist for f*. since the order of magnitude of the time of 
dynamic interaction of aggregates is the same as that of function f* relaxation. If, how- 
ever, the time of aggregate interaction is considerably shorter than the relaxation time 
of f, it is possible to construct for it directly equations of the kind (1,3), 

A similar analysis can be carried out for suspensions containing aggregates of several 
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different kinds.This is done by introducing a system of distribution functions f, (v, t, r), 
a= I,&. . . , and by including in the right-hand parts of kinetic equations of terms 

correponding to interactions with transformation of one kind of suspension into another. 
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